Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Sci Total Environ ; 912: 169183, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092212

RESUMO

Nanoplastics (NPs) presence in agricultural soils can affect plant growth and impact the quality of agricultural products. To investigate the effect of polyamide (PA) NPs and polyethylene (PE) NPs on carbohydrate metabolism and soil microorganisms during rice growth, rice seedlings were exposed to soil containing 2 g/kg of 100 nm PA or 100 nm PE powder for 33 d. The results revealed that 100 nm PE reduced shoot length and dry weight of rice by 4.14 % and 15.68 %, respectively. Analyzing the expression of hexokinase-2 (HXK), phosphofructokinase-1 (PFK), pyruvate kinase (PK) and isocitrate dehydrogenase (IDH), which are four genes related to carbohydrate metabolism, 100 nm PA decreased the expression of PFK and increased the expression of PK and IDH. 100 nm PE increased the expression of HXK, PFK, PK, and IDH. The results of soil microorganisms showed that 100 nm PA significantly effects on 3 bacterial phyla (Bacteroidota, Deinococcota, and Desulfobacterota), whereas 100 nm PE significantly effects on phylum Rozellomycota, class Umbelopsidomycetes, and an unclassified Firmicutes. Our study provides direct evidence of the negative effects of PA and PE on rice, which may be important for assessing the risk of NPs on agroecosystems.


Assuntos
Oryza , Solo , Microplásticos/metabolismo , Nylons/metabolismo , Nylons/farmacologia , Polietileno/metabolismo , Plântula , Metabolismo dos Carboidratos
2.
J Fish Dis ; 47(1): e13862, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37776076

RESUMO

Piscirickettsiosis is the most prevalent bacterial disease affecting seawater salmon in Chilean salmon industry. Antibiotic therapy is the first alternative to counteract infections caused by Piscirickettsia salmonis. The presence of bacterial biofilms on materials commonly used in salmon farming may be critical for understanding the bacterial persistence in the environment. In the present study, the CDC Biofilm Reactor® was used to investigate the effect of sub- and over-MIC of florfenicol on both the pre-formed biofilm and the biofilm formation by P. salmonis under the antibiotic stimuli on Nylon and high-density polyethylene (HDPE) surfaces. This study demonstrated that FLO, at sub- and over-MIC doses, decreases biofilm-embedded live bacteria in the P. salmonis isolates evaluated. However, it was shown that in the P. salmonis Ps007 strain the presence of sub-MIC of FLO reduced its biofilm formation on HDPE surfaces; however, biofilm persists on Nylon surfaces. These results demonstrated that P. salmonis isolates behave differently against FLO and also, depending on the surface materials. Therefore, it remains a challenge to find an effective strategy to control the biofilm formation of P. salmonis, and certainly other marine pathogens that affect the sustainability of the Chilean salmon industry.


Assuntos
Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Salmonidae , Animais , Polietileno/farmacologia , Nylons/farmacologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Antibacterianos/farmacologia , Salmão , Biofilmes , Infecções por Piscirickettsiaceae/veterinária , Infecções por Piscirickettsiaceae/microbiologia
3.
J Pharmacol Sci ; 154(1): 1-8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081679

RESUMO

PURPOSE: The DNA recognition peptide compounds pyrrole-imidazole (PI) polyamides bind to the minor groove and can block the binding of transcription factors to target sequences. To develop more PI polyamides as potential treatments for fibrotic diseases, including chronic renal failure, we developed multifunctional PI polyamides that increase hepatocyte growth factor (HGF) and decrease transforming growth factor (TGF)-ß1. METHODS: We designed seven PI polyamides (HGF-1 to HGF-7) that bind to the chicken ovalbumin upstream promoter transcription factor-1 (COUP-TF1) binding site of the HGF promoter sequence. We selected PI polyamides that increase HGF and suppress TGF-ß1 in human dermal fibroblasts (HDFs). FINDINGS: Gel shift assays showed that HGF-2 and HGF-4 bound the appropriate dsDNAs. HGF-2 and HGF-4 significantly inhibited the TGF-ß1 mRNA expression in HDFs stimulated by phorbol 12-myristate 13-acetate. HGF-2 and HGF-4 significantly inhibited the TGF-ß1 protein expression in HDFs with siRNA targeting HGF, indicating that HGF-2 and HGF-4 directly inhibited the expression of TGF-ß1. CONCLUSION: The designed and synthetic HGF PI polyamides targeting the HGF promoter, which increased the expression of HGF and suppressed the expression of TGF-ß, will be a potential practical medicine for fibrotic diseases, including progressive renal diseases.


Assuntos
Nylons , Fator de Crescimento Transformador beta1 , Humanos , Nylons/química , Nylons/farmacologia , Fator de Crescimento de Hepatócito , Fator de Crescimento Transformador beta/genética , Pirróis/farmacologia , Pirróis/química , Imidazóis/farmacologia , Imidazóis/química
4.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707954

RESUMO

Expansion of CAG and CTG (CWG) triplet repeats causes several inherited neurological diseases. The CWG repeat diseases are thought to involve complex pathogenic mechanisms through expanded CWG repeat-derived RNAs in a noncoding region and polypeptides in a coding region, respectively. However, an effective therapeutic approach has not been established for the CWG repeat diseases. Here, we show that a CWG repeat DNA-targeting compound, cyclic pyrrole-imidazole polyamide (CWG-cPIP), suppressed the pathogenesis of coding and noncoding CWG repeat diseases. CWG-cPIP bound to the hairpin form of mismatched CWG DNA, interfering with transcription elongation by RNA polymerase through a preferential activity toward repeat-expanded DNA. We found that CWG-cPIP selectively inhibited pathogenic mRNA transcripts from expanded CWG repeats, reducing CUG RNA foci and polyglutamine accumulation in cells from patients with myotonic dystrophy type 1 (DM1) and Huntington's disease (HD). Treatment with CWG-cPIP ameliorated behavioral deficits in adeno-associated virus-mediated CWG repeat-expressing mice and in a genetic mouse model of HD, without cytotoxicity or off-target effects. Together, we present a candidate compound that targets expanded CWG repeat DNA independently of its genomic location and reduces both pathogenic RNA and protein levels. CWG-cPIP may be used for the treatment of CWG repeat diseases and improvement of clinical outcomes.


Assuntos
Doença de Huntington , Distrofia Miotônica , Humanos , Animais , Camundongos , RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Nylons/farmacologia , Distrofia Miotônica/genética , Repetições de Trinucleotídeos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , DNA , Imidazóis/farmacologia
5.
J Med Chem ; 66(17): 12059-12068, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37606185

RESUMO

The runt-related transcription factor (RUNX) family is known to play important roles in the progression of cancer. Conjugate 1, which covalently binds to the RUNX-binding sequences, was reported to inhibit the binding of RUNX proteins to their target sites and suppress cancer growth. Here, we evaluated the anticancer effects of 1 and its analogs 2-4 against p53-mutated PANC-1 pancreatic cancer cells. We found that they possessed different DNA-alkylating properties in vitro. And conjugates 1-3 were shown to have anticancer effects by inducing apoptosis in PANC-1 cells. Furthermore, conjugates 2 and 3 suppressed cancer growth in PANC-1 xenograft mice, with activity equivalent to a 50-fold dose of gemcitabine. Especially, 3 showed the highest alkylation efficiency, specificity, and better anticancer effects against pancreatic cancer than 1 in vivo without significant body weight loss. Our results revealed the potential of our compounds as new candidates for cancer therapy.


Assuntos
Nylons , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Nylons/farmacologia , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição , Neoplasias Pancreáticas/tratamento farmacológico , Imidazóis , DNA , Pirróis/farmacologia , Pirróis/uso terapêutico , Neoplasias Pancreáticas
6.
Environ Toxicol Pharmacol ; 102: 104199, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37391052

RESUMO

The purpose of this study is to investigate the impact of microplastics (MPs) on fish and to confirm the toxic effects of MPs on fish, as well as to clarify the standard indicators. MPs are present in a large amount in the aquatic environment and can have various adverse effects on aquatic animals. Crucian carp, Carassius carassius (mean weight, 23.7 ± 1.6 g; mean length, 13.9 ± 1.4 cm), were exposed to PA (Polyamide) concentrations of 0, 4, 8, 16, 32 and 64 mg/L for 2 weeks. The PA accumulation profile in C. carassius decreased from the intestine to the gill to the liver. Hematological parameters such as red blood cell (RBC) counts, hemoglobin (Hb), and hematocrit (Ht) notably decreased at high levels of PA exposure. Plasma components such as calcium, magnesium, glucose, cholesterol, total protein, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were significantly altered by PA exposure. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutathione (GSH) of liver, gill and intestine significantly increased following PA exposure. The results of this study suggest that MP exposure affects the hematological physiology and antioxidant responses in C. carassius as well as accumulation in specific tissues.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Antioxidantes/farmacologia , Plásticos , Nylons/metabolismo , Nylons/farmacologia , Microplásticos/toxicidade , Glutationa/metabolismo , Fígado , Poluentes Químicos da Água/metabolismo
7.
Arch Microbiol ; 205(6): 243, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209212

RESUMO

Recent improvements in 3D printing technology have increased the usage of 3D printed materials in several areas. An exciting and emerging area of applying these next-generation manufacturing strategies is the development of devices for biomedical applications. The main aim of this work was to investigate the effect of tannic acid, gallic acid, and epicatechin gallate on the physicochemical characteristics of acrylonitrile butadiene-styrene (ABS) and Nylon 3D printing materials using the contact angle method. The adhesion of Staphylococcus aureus on untreated and treated materials was evaluated by scanning electron microscopy (SEM) analysis and the images were treated by MATLAB software. The results of the contact angle measurements showed a significant change in the physicochemical properties of both surfaces, indicated an increase in the electron donor character of 3D printing materials following treatment. Thus, the ABS surfaces treated with tannic acid, gallic acid, and epicatechin gallate have become more electron donating. Furthermore, our results proved the ability of S. aureus to adhere on all materials with a percentage of 77.86% for ABS and 91.62% for nylon. The SEM has shown that all actives molecules were sufficient to obtain better inhibition of bacterial adhesion, which tannic acid has shown a total inhibition of S. aureus on ABS. From these results, our treatment presents a high potential for utilization as an active coating to prevent bacterial attachment and the eventual biofilm development in medical field.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Nylons/farmacologia , Impressão Tridimensional , Estireno/química , Estireno/farmacologia , Taninos/farmacologia , Ácido Gálico/farmacologia
8.
J Pharmacol Sci ; 151(3): 148-155, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36828617

RESUMO

The cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB)-glycogen synthase kinase 3ß (GSK3ß) signaling pathway was reported to be involved in the progression of autosomal dominant polycystic kidney diseases (ADPKD). We designed and synthesized pyrrole-imidazole (PI) polyamides as novel gene-silencers to prevent binding of CREB on the GSK3ß gene promoter and examined the effects of the PI polyamides on proliferation and cyst formation of mouse collecting duct M1 cells. The GSK3ß PI polyamides significantly inhibited expression of GSK3ß mRNA in M1 cells with forskolin. To obtain cells as collecting ducts from ADPKD, the PKD1 gene was knocked down by shRNA. Lower concentrations of forskolin significantly stimulated proliferation of PKD1 knock-down M1 cells, whereas GSK3ß PI polyamide significantly inhibited proliferation of PKD1 knock-down M1 cells with forskolin. Stimulation with forskolin for 5 days induced enlargement of cysts from PKD1 knock-down M1 cells. GSK3ß PI polyamides significantly suppressed the enlargement of cysts with forskolin stimulation in PKD1 knock-down M1 cells. Thus, the present study showed that transcriptional suppression of the GSK3ß gene by PI polyamides targeting the binding of CREB inhibited the proliferation and cyst formation of PKD1 knock-down M1 cells. The GSK3ß PI polyamides may potentially be novel medicines for ADPKD.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim Policístico Autossômico Dominante/metabolismo , Nylons/farmacologia , Glicogênio Sintase Quinase 3 beta , Colforsina , Imidazóis/farmacologia , Cistos/metabolismo , Pirróis/farmacologia , Rim/metabolismo
9.
Bioorg Med Chem ; 81: 117208, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780807

RESUMO

GAA repeat expansion in the first intron of the frataxin (FXN) gene represses the transcription of FXN, and that induces Friedreich's ataxia (FRDA). Pyrrole-imidazole polyamides (PIPs) are the class of oligopeptide that targets double-stranded DNA with sequence selectivity. Previously, bromodomain inhibitors such as JQ1 conjugated with PIPs were reported to selectively increase transcription. Here, we report the synthesis of a compound that increases the transcription of FXN in cells derived from an FRDA patient. The compound was effective in lower (one tenth) concentration than the compound that previously reported. High concentration of the compound is toxic, but toxicity was reduced with a host-guest complex.


Assuntos
Nylons , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Nylons/farmacologia , Expansão das Repetições de Trinucleotídeos , Regulação da Expressão Gênica , Imidazóis/farmacologia
10.
Cancer Med ; 12(5): 5821-5832, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36262061

RESUMO

BACKGROUND: Activating mutations of the KRAS occurs in >90% of pancreatic ductal adenocarcinoma (PDAC) cases. However, direct pharmacological targeting of the activated KRAS protein has been challenging. We previously reported that KR12, a DNA-alkylating pyrrole-imidazole polyamide designed to recognize the KRAS G12D/V mutation, showed an anti-tumor effect in colorectal cancer. In this study, we evaluated the anti-tumor effect of KR12 in PDAC. METHODS: KR12 was synthesized by an automated peptide synthesizer PSSM-8 and tested for anti-tumor effect in PDAC mouse models. RESULT: KR12 inhibited tumor growth in a spontaneous PDAC mouse model, although the anti-tumor activity appeared to be limited in a human PDAC xenograft model. We developed a pyrrole-imidazole polyamide screening process based on the hypothesis that genetic elements otherwise unaffected by KR12 could exert attenuating effects on KRAS-suppression-resistant PDAC. We identified RAD51 as a potential therapeutic target in human PDAC cells. A RAD51 inhibitor showed an inhibitory effect on cell growth and affected the cytotoxic activity of KR12 in PDAC cells. CONCLUSION: These data suggested that the simultaneous inhibition of RAD51 and mutant KRAS blockage would be an important therapeutic strategy for PDAC.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Nylons/farmacologia , Nylons/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , DNA/uso terapêutico , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Neoplasias Pancreáticas
11.
Int J Cancer ; 152(5): 962-976, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214789

RESUMO

Cervical cancer remains a major threat to women's health, especially in countries with limited medical resources, and new drugs are needed to improve patient survival and minimize adverse effects. Here, we examine the effects of a triphenylphosphonium (TPP)-conjugated pyrrole-imidazole polyamide (CCC-h1005) targeting the common homoplasmic mitochondrial DNA (mtDNA) cancer risk variant (ATP6 8860A>G) on the survival of cervical cancer cell lines, cisplatin-resistant HeLa cells and patient-derived cervical clear cell carcinoma cells as models of cervical cancer treatment. We found that CCC-h1005 induced death in these cells and suppressed the growth of xenografted HeLa tumors with no severe adverse effects. These results suggest that PIP-TPP designed to target mtDNA cancer risk variants can be used to treat many cervical cancers harboring high copies of the target variant, providing a foundation for clinical trials of this class of molecules for treating cervical cancer and other types of cancers.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Nylons/farmacologia , DNA Mitocondrial/genética , Células HeLa , Pirróis/farmacologia , Imidazóis/farmacologia
12.
World J Microbiol Biotechnol ; 39(1): 32, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36462123

RESUMO

Given the environmental burden of textile industry, especially of dyeing processes and the volume of synthetic dyes and surfactants, the intensive development of the greener approaches is under way. Herein, an environmentaly-friendly dyeing of polyamide (PA) and PA/Elastane (PA/EA) knits using live bacterial approach in water environment, completely eliminating usage of textile auxiliaries is described. A total of 12 pigment-producing Streptomyces strains were isolated and purified from soil and rizoshere or bark of smoke tree Cotinus coggygria samples. The antibacterial, antifungal and cytotoxic effects of crude bacterial extracts were tested. Antimicrobial effect was obtained by the majority of extracts but only two streptomycetes extracts, 11-5 and BPS51, showed moderate cytotoxicity against HaCaT human cell line. This was the reason to select 11-5 and BPS51 strains for the dyeing of the textile materials. Excellent properties of dyeing wool, silk and PA are achieved initially using live cultures, and the bioprocess is optimized on commercial PA and PA/EA knits used for stockings production. Satisfactory coloration of both knits is achieved with dynamic conditions (culture shaking at 180 rpm over 5-14 days at 30 ºC) giving the best coloration results, except in the case of the PA sample dyed with a bacterial strain 11-5. The prolongation of dyeing time leads to higher color yields independently of fabric and bacteria strain. Although the color differences between the samples before and after washing are observed, washing fastness after three washing cycles can be considered as satisfactory.


Assuntos
Nylons , Streptomyces , Animais , Humanos , Corantes , Nylons/farmacologia , Poliuretanos
13.
ACS Appl Mater Interfaces ; 14(37): 42483-42493, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36073910

RESUMO

Microbial adhesion and contamination on shared surfaces can lead to life-threatening infections with serious impacts on public health, economy, and clinical practices. The traditional use of chemical disinfectants for sanitization of surfaces, however, comes with its share of health risks, such as hazardous effects on the eyes, skin, and respiratory tract, carcinogenicity, as well as environmental toxicity. To address this, we have developed a nonleaching quaternary small molecule (QSM)-based sprayable coating which can be fabricated on a wide range of surfaces such as nylon, polyethylene, surgical mask, paper, acrylate, and rubber in a one-step, photocuring technique. This contact-active coating killed pathogenic bacteria and fungi including drug-resistant strains of Staphylococcus aureus and Candida albicans within 15-30 min of contact. QSM coatings withstood multiple washes, highlighting their durability. Interestingly, the coated surfaces exhibited rapid killing of pathogens, leading to the prevention of their transmission upon contact. The coating showed membrane disruption of bacterial cells in fluorescence and electron microscopic investigations. Along with bacteria and fungi, QSM-coated surfaces also showed the complete killing of high loads of influenza (H1N1) and SARS-CoV-2 viruses within 30 min of exposure. To our knowledge, this is the first report of a coating for multipurpose materials applied in high-touch public places, hospital equipment, and clinical consumables, rapidly killing drug-resistant bacteria, fungi, influenza virus, and SARS-CoV-2.


Assuntos
Anti-Infecciosos , COVID-19 , Desinfetantes , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Acrilatos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias , COVID-19/prevenção & controle , Desinfetantes/farmacologia , Fungos , Humanos , Nylons/farmacologia , Polietilenos/farmacologia , Borracha , SARS-CoV-2
14.
Toxicol Lett ; 370: 35-41, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089169

RESUMO

Microplastic particles are ubiquitous in the environment. However, little is known about their uptake and effects in humans or mammalian model organisms. Here, we studied the effects of pristine polyamide (15-20 µm) and polyethylene (40-48 µm) particles after oral ingestion in rats. The animals received feed containing microplastic particles (0.1% polyamide or polyethylene, or a mixture of both polymers) or a control diet without microplastic particles, for 5 weeks. The permeability of the duodenum was investigated in an Ussing chamber, whereas gene expression and concentration of tight junction proteins were measured in gut tissue and plasma. Microplastic particles were quantified by pyrolysis-gas chromatography/mass spectrometry in rats' feces. Rats fed with microplastic particles had higher duodenal permeability. Expression of gene coding for the tight junction protein occludin (OCLN) was higher in PE treated animals compared to control or the PA group. No changes in the expression of the gene coding for zonula occludens protein 1 were detected. Occludin protein concentrations were below the limit of detection of the applied method in both gut and plasma. Zonula occludens protein 1 concentrations in the gut were significantly higher in groups exposed to PA and PE as compared to control, while zonula occludens protein 1 concentrations in plasma did not show significant changes. These results demonstrated that short-term exposure to a dose of 0.1% (w/w) microplastic particles in feed had limited effects on duodenal permeability, expression of pro-inflammatory protein genes and tight junction protein genes in the duodenum.


Assuntos
Microplásticos , Nylons , Animais , Ingestão de Alimentos , Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Nylons/metabolismo , Nylons/farmacologia , Ocludina/genética , Permeabilidade , Plásticos/metabolismo , Plásticos/farmacologia , Polietileno/toxicidade , Ratos , Ratos Wistar , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas , Proteína da Zônula de Oclusão-1/metabolismo
15.
Sci Total Environ ; 851(Pt 2): 158264, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037899

RESUMO

Microplastics (MPs) were continuously transported to wastewater treatment systems and accumulated in sludge constantly, potentially affecting systems function and co-occurrent contaminants fate. However, previous studies were based on acute exposure of MPs, which could not reflect the dynamics of MPs accumulation. Herein, this study firstly raised a more realistic method to evaluate the practical impacts of MPs on systems purification efficiency and antibiotic resistance genes (ARGs) fate. Continuous exposure of MPs did not pose negative effects on nutrients removal, but significantly changed the occurrence patterns of ARGs. ARGs abundances increased by 42.8 % and 54.3 % when exposed to millimeter-size MPs (mm-MPs) polyamide and polyethylene terephthalate, but increased by 31.3 % and 39.4 % to micron-size MPs (µm-MPs), respectively. Thus, mm-MPs posed severer effects on ARGs than µm-MPs. Further, mm-MPs surface properties were obviously altered after long-term exposure (higher specific surface area and O-containing species), which benefited microbes attachment. More importantly, more taxa linkages and changed topological properties (higher average degree and average weight) of co-occurrent network were observed in sludge with mm-MPs than with µm-MPs, as well as totally different potential host bacteria of ARGs. Rough surface of MPs and closer relations between ARGs and bacteria taxa contributed to the propagation of ARGs, which accounted for the observed higher ARGs abundances of mm-MPs. This study demonstrated that long-term accumulation of MPs in wastewater treatment systems affected ARGs fate, and mm-MPs caused severer risk due to their enrichment of ARGs. The results would promote the understanding of MPs real environmental behavior and influences.


Assuntos
Microplásticos , Purificação da Água , Microplásticos/toxicidade , Antibacterianos/farmacologia , Esgotos , Plásticos , Polietilenotereftalatos , Nylons/farmacologia , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Propriedades de Superfície , Águas Residuárias
16.
Biochem Biophys Res Commun ; 623: 9-16, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868070

RESUMO

Androgens and androgen receptor (AR) have a central role in prostate cancer progression by regulating its downstream signaling. Although androgen depletion therapy (ADT) is the primary treatment for most prostate cancers, they acquires resistance to ADT and become castration resistant prostate cancers (CRPC). AR complex formation with multiple transcription factors is important for enhancer activity and transcriptional regulation, which can contribute to cancer progression and resistance to ADT. We previously demonstrated that OCT1 collaborates with AR in prostate cancer, and that a pyrrole-imidazole (PI) polyamide (PIP) targeting OCT1 inhibits cell and castration-resistant tumor growth (Obinata D et al. Oncogene 2016). PIP can bind to DNA non-covalently without a drug delivery system unlike most DNA targeted therapeutics. In the present study, we developed a PIP modified with a DNA alkylating agent, chlorambucil (ChB) (OCT1-PIP-ChB). Then its effect on the growth of prostate cancer LNCaP, 22Rv1, and PC3 cells, pancreatic cancer BxPC3 cells, and colon cancer HCT116 cells, as well as non-cancerous MCF-10A epithelial cells, were analyzed. It was shown that the IC50s of OCT1-PIP-ChB for 22Rv1 and LNCaP were markedly lower compared to other cells, including non-cancerous MCF-10A cells. Comprehensive gene expression analysis of CRPC model 22Rv1 cells treated with IC50 concentrations of OCT1-PIP-ChB revealed that the gene group involved in DNA double-strand break repair was the most enriched among gene sets repressed by OCT1-PIP-ChB treatment. Importantly, in vivo study using 22Rv1 xenografts, we showed that OCT1-PIP-ChB significantly reduced tumor growth compared to the control group without showing obvious adverse effects. Thus, the PIP combined with ChB can exert a significant inhibitory effect on prostate cancer cell proliferation and castration-resistant tumor growth, suggesting a potential role as a therapeutic agent.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Alquilantes , Linhagem Celular Tumoral , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Masculino , Nylons/farmacologia , Neoplasias de Próstata Resistentes à Castração/patologia , Pirróis/farmacologia , Pirróis/uso terapêutico , Receptores Androgênicos/metabolismo
17.
Bioorg Med Chem Lett ; 72: 128876, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35788036

RESUMO

Pyrrolobenzodiazepine (PBD) dimers are well-known highly potent antibody drug conjugate (ADC) payloads. The corresponding PBD monomers, in contrast, have received much less attention from the ADC community. We prepared several novel polyamide-linked PBD monomers and evaluated their utility as ADC payloads. The unconjugated polyamide-PBD hybrids exhibited potent antiproliferative activity (IC50 range: 10-11-10-8 M) against a variety of HER2-expressing cancer cell lines. Several peptide-linked variants of the lead compound were prepared and conjugated to trastuzumab to afford ADCs with drug-to-antibody (DAR) ratios ranging from 3 to 5. The ADCs exhibited antigen-dependent cytotoxicity in vitro and potently suppressed tumor xenograft growth in vivo in a target-dependent manner. Moreover, the ADCs were well-tolerated in both mouse and rat. This work demonstrates for the first time that PBD polyamide hybrids can serve as effective ADC payloads.


Assuntos
Antineoplásicos , Imunoconjugados , Animais , Antineoplásicos/farmacologia , Benzodiazepinas , Linhagem Celular Tumoral , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Camundongos , Nylons/farmacologia , Pirróis , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Arch Environ Contam Toxicol ; 83(2): 129-141, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35902406

RESUMO

The goal of our study was to examine the effects of low abundances of nylon fibers on feeding rates of calanoid copepods (Crustacea, Copepoda) and doliolids (Tunicata, Thaliacea) in the presence of diatoms at near environmental concentration levels. In addition, we examined microscopically the fecal pellets produced by copepods and doliolids in the presence of fibers. Adult females of the calanoid Eucalanus pileatus and early gonozooids of Dolioletta gegenbauri (both of similar dry weight) cleared the diatom Rhizosolenia alata at similar rates. Nylon fibers were cleared at higher rates by Dolioletta gegenbauri compared to Eucalanus pileatus. Examination of fecal pellets revealed that copepods and doliolids could ingest the about 300 µm long fibers. The latter also ingested the occasionally occurring fibers of > 1 mm length. It appears that in seawater fiber abundances of about seven fibers ml-1 did not have a negative effect on feeding of either E. pileatus or D. gegenbauri. As doliolids and copepods remove plastic fibers from seawater by packing them into their pellets, they might play a role in the reduction of microplastic pollution and the microplastic transfer from the water column to the seafloor. Calanoid copepods may limit ingesting fibers by not perceiving them, as compared to doliolids which do not seem to be able to avoid ingesting them.


Assuntos
Copépodes , Diatomáceas , Urocordados , Animais , Feminino , Microplásticos , Nylons/farmacologia , Plásticos , Zooplâncton
19.
PeerJ ; 10: e13533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663524

RESUMO

Although evidence suggests that microplastic (MP) particles pose a risk to organisms, the effects of virgin and weathered MP should be evaluated separately as their effects may be different. In this work, we provide new information on the toxic potential of virgin and UV-weathered polyamide, one of the commonly used plastics worldwide. Polyamide MP particles were subjected to UV-weathering in wet conditions over 26 days in a customized irradiation chamber equipped with UV-C light tubes (15 W each, max. wavelength 254 nm). The toxicity of virgin and UV-weathered polyamide MP (< 180 µm in one dimension, 100 and 300 mg L-1) was evaluated by studying Daphnia magna reproduction in natural lake water spiked with MP, following the 21-day OECD 211 test guideline. In parallel, a nonionic surfactant Tween 20 (7 mg L-1) was added to the test medium to improve the suspendability of the MP. The results of the tests showed no adverse effects of either virgin or UV-weathered polyamide MP on the reproduction of D. magna. In addition, presence of Tween 20 in the test medium had no effects on the test results. These results bring a new perspective on the potential long-term impact of polyamide particles on aquatic organisms, especially considering that the polyamide has received marginal attention in the ecotoxicological research. However, standard test endpoints (survival and reproduction) may still miss long-term adverse effects of insoluble e.g., plastic particles and additional studies may be necessary.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Nylons/farmacologia , Plásticos/toxicidade , Daphnia , Polissorbatos/farmacologia , Poluentes Químicos da Água/toxicidade , Reprodução
20.
Photodiagnosis Photodyn Ther ; 39: 102874, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35470125

RESUMO

AIM: The present study aimed to evaluate the anticandidal effectiveness of PDT, DL, Triphala, CHX, and NE and their effects on Ra and the hardness of polyamide denture base colonized with C. Albicans. MATERIAL AND METHODS: A total of 50 thermo-injected polyamide denture resins were constructed and inoculated by the American Type Culture Collection (ATCC) of C. albicans in an in-vitro setup. The specimens were arbitrarily allocated into five groups, pre-candida count was measured then subjected to the diverse polyamide denture disinfection methodologies: Group 1: PDT, Group 2: Diode Laser, group 3: Triphala, group 4: 0.12% CHX (Control) and group 5 Neem extract. After disinfection protocol, post-candida count (CFU/ml) was assessed. Surface roughness and surface hardness of polyamide dentures were evaluated and statistical differences in the Ra and Vickers hardness was also assessed. Statistical analysis was performed for CFU/mL (log10) for exposed C. albicans by two-way ANOVA and Tukey's multiple test (p>0.05). For normality of the data, Kolmogorov Smirnov test was executed. RESULTS: The highest anti-microbial efficacy against Candida colonies was displayed by chemical control group 0.12% CHX (11.39 ± 1.8 CFU/ml). This was comparable to herbal NE (12.45 ± 2.9 CFU/ml) (p>0.05). There was no statistical difference found in the surface hardness values among the disinfected groups. Group 2: DL (1.32 ± 0.13 µm) showed the highest Ra value comparable to group 1: PDT (1.21 ± 0.22 µm) CONCLUSION: Polyamide denture base colonized with C. Albicans and disinfected with 0.12% Chlorhexidine and Neem extract demonstrated the highest antimicrobial efficacy with decreased surface roughness and no alteration in denture hardness.


Assuntos
Desinfetantes , Fotoquimioterapia , Resinas Acrílicas/farmacologia , Candida , Candida albicans , Higienizadores de Dentadura/farmacologia , Dentaduras , Desinfetantes/farmacologia , Dureza , Teste de Materiais , Nylons/farmacologia , Fotoquimioterapia/métodos , Extratos Vegetais/farmacologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...